Lipo-chitooligosaccharide Nodulation Signals from Rhizobium meliloti Induce Their Rapid Degradation by the Host Plant Alfalfa.

نویسندگان

  • C. Staehelin
  • M. Schultze
  • E. Kondorosi
  • A. Kondorosi
چکیده

Extracellular enzymes from alfalfa (Medicago sativa L.) involved in the degradation of nodulation (Nod) factors could be distinguished by their different cleavage specificities and were separated by lectin affinity chromatography. A particular glycoprotein was able to release an acylated lipo-disaccharide from all tested Nod factors having an oligosaccharide chain length of four or five residues. Structural modifications of the basic lipo-chitooligosaccharide did not affect the cleavage site and had only weak influence on the cleavage efficiency of Nod factors tested. The acylated lipo-trisaccharide was resistant to degradation. When alfalfa roots were preincubated with Nod factors at nanomolar concentrations, the activity of the dimer-forming enzyme was stimulated up to 6-fold within a few hours. The inducing activity of Nod factors decreased in the order NodRm-IV(C16:2,Ac,S) > NodRm-IV(C16:2,S) and NodRm-V(C16:2,Ac,S) > NodRm-V(C16:2,S) > NodRm-IV(C16:0,S) > NodRm-IV(C16:2). Pretreatment with NodRm-III(C16:2) as well as unmodified chitooligosaccharides did not stimulate the dimer-forming enzyme. Roots preincubated with Rhizobium meliloti showed similar stimulation of the dimer-forming activity. Mutant strains unable to produce Nod factors did not enhance the hydrolytic activity. These results indicate a rapid feedback inactivation of Nod signals after their perception by the host plant alfalfa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flavone limitations to root nodulation and symbiotic nitrogen fixation in alfalfa.

Transcription of the nodABC genes in Rhizobium meliloti is required for root nodule formation in alfalfa (Medicago sativa L.) and occurs when specific compounds, such as the flavone luteolin, are supplied by the host plant. Results reported here indicate how luteolin in the root and rhizosphere can affect subsequent N(2) fixation and plant growth. Previous experiments with ;Hairy Peruvian 32' (...

متن کامل

Structure-function analysis of nod factor-induced root hair calcium spiking in Rhizobium-legume symbiosis.

In the Rhizobium-legume symbiosis, compatible bacteria and host plants interact through an exchange of signals: Host compounds promote the expression of bacterial biosynthetic nod (nodulation) genes leading to the production of a lipochito-oligosaccharide signal, the Nod factor (NF). The particular array of nod genes carried by a given species of Rhizobium determines the NF structure synthesize...

متن کامل

Structural studies of alfalfa roots infected with nodulation mutants of Rhizobium meliloti.

Alfalfa roots infected with four nodulation defective (Nod-) mutants of Rhizobium meliloti which were generated by transposon Tn5 mutagenesis were examined by light and electron microscopy. In one class of Nod- mutants, which we can nonreactive, the bacteria did not induce root hair curling or penetrate host cells. In a second class of Nod- mutants, which we call reactive, the bacteria induced ...

متن کامل

Interference between Rhizobium meliloti and Rhizobium trifolii nodulation genes: genetic basis of R. meliloti dominance.

Transfer of an IncP plasmid carrying the Rhizobium meliloti nodFE, nodG, and nodH genes to Rhizobium trifolii enabled R. trifolii to nodulate alfalfa (Medicago sativa), the normal host of R. meliloti. Using transposon Tn5-linked mutations and in vitro-constructed deletions of the R. meliloti nodFE, nodG, and nodH genes, we showed that R. meliloti nodH was required for R. trifolii to elicit both...

متن کامل

Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses.

Rhizobium meliloti produces lipochitooligosaccharide nodulation NodRm factors that are required for nodulation of legume hosts. NodRm factors are O-acetylated and N-acylated by specific C16-unsaturated fatty acids. nodL mutants produce non-O-acetylated factors, and nodFE mutants produce factors with modified acyl substituents. Both mutants exhibited a significantly reduced capacity to elicit in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 108 4  شماره 

صفحات  -

تاریخ انتشار 1995